The evolution of the stellar mass versus halo mass relationship
نویسندگان
چکیده
We present an analysis of the predictions made by the GALFORM semi-analytic galaxy formation model for the evolution of the relationship between stellar mass and halo mass. We show that for the standard implementations of supernova feedback and gas reincorporation used in semianalytic models, this relationship is predicted to evolve weakly over the redshift range 0 < z < 4. Modest evolution in the median stellar mass versus halo mass (SHM) relationship implicitly requires that, at fixed halo mass, the efficiency of stellar mass assembly must be almost constant with cosmic time.We show that in ourmodel, this behaviour can be understood in simple terms as a result of a constant efficiency of gas reincorporation, and an efficiency of SNe feedback that is, on average, constant at fixed halo mass. We present a simple explanation of how feedback from active galactic nuclei (AGN) acts in our model to introduce a break in the SHM relation whose location is predicted to evolve only modestly. Finally, we show that if modifications are introduced into the model such that, for example, the gas reincorporation efficiency is no longer constant, the median SHM relation is predicted to evolve significantly over 0<z< 4. Specifically, we consider modifications that allow themodel to better reproduce either the evolution of the stellar mass function or the evolution of average star formation rates inferred from observations.
منابع مشابه
A census of stellar mass in ten massive haloes at z ∼ 1 from the GCLASS Survey
Aims. We study the stellar mass content of massive haloes in the redshift range 0.86 < z < 1.34, by measuring (1) the stellar mass in the central galaxy versus total dynamical halo mass; (2) the total stellar mass (including satellites) versus total halo mass; and (3) the radial stellar mass and number density profiles for the ensemble halo. Methods. We use a Ks-band selected catalogue for the ...
متن کاملScaling relations in dynamical evolution of star clusters
We have carried out a series of small scale collisional N-body calculations of single-mass star clusters to investigate the dependence of the lifetime of star clusters on their initial parameters. Our models move through an external galaxy potential with a logarithmic density profile and they are limited by a cut-off radius. In order to find scaling relations between the lifetime of star cluste...
متن کاملEstimating the Dark Halo Mass from the Relative Thickness of Stellar Disks
We analyze the relationship between the mass of a spherical component and the minimum possible thickness of stable stellar disks. This relationship for real galaxies allows the lower limit on the dark halo mass to be estimated (the thinner the stable stellar disk is, the more massive the dark halo must be). In our analysis, we use both theoretical relations and numerical N-body simulations of t...
متن کاملEstimating the Dark Halo Mass from the Relative Thickness of Stellar Disks
We analyze the relationship between the mass of a spherical component and the minimum possible thickness of stable stellar disks. This relationship for real galaxies allows the lower limit on the dark halo mass to be estimated (the thinner the stable stellar disk is, the more massive the dark halo must be). In our analysis, we use both theoretical relations and numerical N-body simulations of t...
متن کاملA Comprehensive Analysis of Uncertainties Affecting the Stellar Mass – Halo Mass Relation For
We conduct a comprehensive analysis of the relationship between central galaxies and their host dark matter halos, as characterized by the stellar mass – halo mass (SM–HM) relation, with rigorous consideration of uncertainties. Our analysis focuses on results from the abundance matching technique, which assumes that every dark matter halo or subhalo above a specific mass threshold hosts one gal...
متن کامل